
Numerieke wiskunde 2, WINM2-08 2011/12 semester II a

Examination, April 2nd, 2012.

Name Student number

Notes:

• You may use one sheet (single side written) with notes from the lectures.

• During the exam it is NOT permitted to consult books, handouts, other notes.

• Numerical/graphic calculators are permitted, programmable calculators are NOT
permited.

• Devices with wireless internet connection and/or document readers are NOT permitted.

• Hint: please describe the solution procedures in full details, not only the results.

• Normering: to pass the exam, You need to gather at least half of the total points at
the final exam. The final grade for the course is computed by averaging the grade for the
practicals (40%) and the grade for the exam (60%).

TEST (to be returned by 17:00)

1. Complexity of the Gaussian elimination algorithm.

Consider a system of linear equations Ax = b, where A is a complex matrix of dimension
n× n and b is a complex vectors of size n.

(a) [pts 4] Convert this problem into the equivalent problem of solving a real square
linear system of dimension 2n. Write A = A1 + iA2, b = b1 + ib2, x = x1 + ix2, with
A1, A2, b1, b2, x1, x2 all real quantities. Determine the equations that are satisfied
by x1 and x2.

(b) [pts 6] Determine the number of operations and the computer memory needed by
the Gaussian elimination algorithm to solve the complex linear system Ax = b using
the method described in (a). Compare these results with the number of operations
and the memory needed to solve Ax = b using Gaussian elimination and complex
arithmetic.

Solution.

(a) In partitioned form, [
A1 −A2

A2 A1

] [
x1
x2

]
=

[
b1
b2

]



(b) Let system 1 denote the real system of part (a), and let system 2 denote the original
complex system Ax = b. For the matrix storage requirements, system 1 requires 4n2

locations, and system 2 requires 2n2 locations (each complex number requires two
storage locations). To solve system 1 requires about 1

3(2n)3 = 8
3n

3 multiplications
and divisions. System 2 requires 1

3n
3 complex multiplications and divisions. Since

each complex multiplication requires four real multiplications, the actual operation
count is 4

3n
3. Thus system 2 requires half the storage requirements and about half

the operation time of system 1.

2. Choleski decomposition.

In the course, we have studied that a symmetric positive definite matrix always admits a
Choleski factorization of the form A = LLT , where L is a lower triangular matrix with
positive diagonal elements.

(a) [pts 4] Prove that the viceversa of the statement is also true. More precisely, prove
that if A = LLT with L real and nonsingular, then A is symmetric and positive
definite.

(b) [pts 5] Using the Choleski method, calculate the decomposition A = LLT for the
matrix  2.25 − 3.0 4.5

− 3.0 5.0 −10.0
4.5 −10.0 34.0

 .
Solutions. (Ax, x) = (LLTx, x) = (LTx, LTx) = ‖LTx‖22 > 0 for all x 6= 0, since LT is
nonsingular. Also det(A) = det(L)2.

3. Orthogonal polynomials

Let the polynomials ϕj , j = 0, 1, . . ., form an orthogonal system on the interval [−1, 1]
with respect to the weight function w(x) ≡ 1.

(a) [pts 4] Show that the polynomials ϕj((2x − a − b)/(b − a)), j = 0, 1, . . ., represent
an orthogonal system in the interval [a, b] with respect to the same weight function.

(b) [pts 5] From the Legendre polynomials

ϕ0(x) ≡ 1,
ϕ1(x) ≡ x,
ϕ2(x) ≡ x2 − 1

3 ,

defined in the interval [−1, 1] with respect to the weight function w(x) ≡ 1, obtain the
orthogonal polynomials ϕ0(x), ϕ1(x), ϕ2(x) defined in the interval [0, 1] with respect
to the same weight function.
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Solutions.

(a) Since the polynomials ϕj(x) are orthogonal on the interval [−1, 1], we know that∫ 1

−1
ϕi(t)ϕj(t)dt = 0, i 6= j.

In this integral, we make the change of variable

t = (2x− a− b)/(b− a), x =
1

2
[(b− a)t+ a+ b],

and it becomes∫ b

a
ϕi((2x− a− b)/(b− a))ϕj((2x− a− b)/(b− a))

2

b− a
dx.

This shows that the new polynomials form an orthogonal system on the interval [a, b].

(b) From the Legendre polynomials,

φ0(t) = 1
φ1(t) = t
φ2(t) = t2 − 1/3

we write t = 2x− 1 and get the orthogonal polynomials on [0, 1] in the form

φ0(x) = 1
φ1(x) = 2x− 1
φ2(x) = (2x− 1)2 − 1/3 = 4x2 − 4x+ 2/3

Normalising each of the Legendre polynomials so that its value at x = 1 is equal to
1, the polynomials φ0, φ1, φ2, φ3 are obtained

φ0(x) = 1,
φ1(x) = x,
φ2(x) = 3

2x
2 − 1

2 ,

These are the first four elements of the system of Legendre polynomials, orthogonal
on the interval (−1, 1) with respect to the weight function w(x) ≡ 1.

4. Householder and Givens transformations.

(a) [pts 5] Using Householder reductions, compute the QR factors of the matrix

A =

 1 19 −34
−2 −5 20

2 8 37

 .
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(b) [pts 5] Compute the QR factors of the same matrix of part (a) using Givens
reductions.

Solutions.

(a) Householder reduction produces

R2R1A =

 1 0 0
0 −3/5 4/5
0 4/5 3/5

 1/3 −2/3 2/3
−2/3 1/3 2/3
2/3 2/3 1/3

 1 19 −34
−2 −5 2−
2 8 37


=

 3 15 0
0 15 −30
0 0 45

 = R

so

Q = (R2R1)
T =

 1/3 14/15 −2/15
−2/3 1/3 2/3
2/3 −2/15 11/15

 .

(b) Givens reduction produces P23P13P12A = R, where

P12 =

 1/
√

5 −2/
√

5 0

2/
√

5 1/
√

5 0
0 0 1

 , P13 =

 √5/3 0 2/3
0 1 0

−2/3 0
√

5/3


P23 =

 1 0 0

0 11/5
√

5 −2/5
√

5

0 2/5
√

5 11/5
√

5



5. Eigenvalues.

[pts 5] Explain why the matrix

A =


1 0 −2 0
0 12 0 −4
1 0 −1 0
0 5 0 0


must have at least two real eigenvalues.

Solutions. Since one Geschgorin circle (derived from row sums and shown below) is isolated
from the union of the other three circles, Gerschgorin theorems insure that there is one
eigenvalue in the isolated circle and three eigenvalues in the union of the other three. But
the eigenvalues of real matrices occur in conjugate pairs. So, the root in the isolated circle
must be real and there must be at least one real root in the union of the other three circles.
Computation reveals that σ(A) = {±i, 2, 10}.
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6. Polynomial of best approximation to functions.

[pts 7] Construct the polynomial of best approximation p1 of degree one, defined on the
interval [−2, 1], for the function f defined by f(x) = |x|.
Solution. The minimax polynomial must be such that f(x)− p1(x) has three alternating
extrema in [−2, 1] due to the Oscillating Theorem. Since f is convex, two of these extrema
are at the ends −2 and 1, and the other must clearly be at 0. Graphically, the line p1 must
be parallel to the chord joining (−2, f(−2)) and (1, f(1)). Thus

p1(x) = c0 −
1

3
x.

The alternating extrema are then

f(−2)− p1(−2) = 2−
(
c0 + 2

3

)
= 4

3 − c0
f(0)− p1(0) = 0− (c0) = −c0
f(1)− p1(1) = 1−

(
c0 − 1

3

)
= 4

3 − c0.

These have the same magnitude if

4

3
− c0 = −(−c0),

so that the minimax polynomial is

p1(x) =
2

3
− 1

3
x,

and

‖f − p1‖∞ =
2

3
.
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